3.111 \(\int \frac{x^4 (4+x^2+3 x^4+5 x^6)}{(3+2 x^2+x^4)^2} \, dx\)

Optimal. Leaf size=232 \[ \frac{5 x^3}{3}-\frac{25 \left (x^2+3\right ) x}{8 \left (x^4+2 x^2+3\right )}-\frac{1}{32} \sqrt{\frac{1}{2} \left (26499 \sqrt{3}-14395\right )} \log \left (x^2-\sqrt{2 \left (\sqrt{3}-1\right )} x+\sqrt{3}\right )+\frac{1}{32} \sqrt{\frac{1}{2} \left (26499 \sqrt{3}-14395\right )} \log \left (x^2+\sqrt{2 \left (\sqrt{3}-1\right )} x+\sqrt{3}\right )-17 x-\frac{1}{16} \sqrt{\frac{1}{2} \left (14395+26499 \sqrt{3}\right )} \tan ^{-1}\left (\frac{\sqrt{2 \left (\sqrt{3}-1\right )}-2 x}{\sqrt{2 \left (1+\sqrt{3}\right )}}\right )+\frac{1}{16} \sqrt{\frac{1}{2} \left (14395+26499 \sqrt{3}\right )} \tan ^{-1}\left (\frac{2 x+\sqrt{2 \left (\sqrt{3}-1\right )}}{\sqrt{2 \left (1+\sqrt{3}\right )}}\right ) \]

[Out]

-17*x + (5*x^3)/3 - (25*x*(3 + x^2))/(8*(3 + 2*x^2 + x^4)) - (Sqrt[(14395 + 26499*Sqrt[3])/2]*ArcTan[(Sqrt[2*(
-1 + Sqrt[3])] - 2*x)/Sqrt[2*(1 + Sqrt[3])]])/16 + (Sqrt[(14395 + 26499*Sqrt[3])/2]*ArcTan[(Sqrt[2*(-1 + Sqrt[
3])] + 2*x)/Sqrt[2*(1 + Sqrt[3])]])/16 - (Sqrt[(-14395 + 26499*Sqrt[3])/2]*Log[Sqrt[3] - Sqrt[2*(-1 + Sqrt[3])
]*x + x^2])/32 + (Sqrt[(-14395 + 26499*Sqrt[3])/2]*Log[Sqrt[3] + Sqrt[2*(-1 + Sqrt[3])]*x + x^2])/32

________________________________________________________________________________________

Rubi [A]  time = 0.292392, antiderivative size = 232, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 7, integrand size = 31, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.226, Rules used = {1668, 1676, 1169, 634, 618, 204, 628} \[ \frac{5 x^3}{3}-\frac{25 \left (x^2+3\right ) x}{8 \left (x^4+2 x^2+3\right )}-\frac{1}{32} \sqrt{\frac{1}{2} \left (26499 \sqrt{3}-14395\right )} \log \left (x^2-\sqrt{2 \left (\sqrt{3}-1\right )} x+\sqrt{3}\right )+\frac{1}{32} \sqrt{\frac{1}{2} \left (26499 \sqrt{3}-14395\right )} \log \left (x^2+\sqrt{2 \left (\sqrt{3}-1\right )} x+\sqrt{3}\right )-17 x-\frac{1}{16} \sqrt{\frac{1}{2} \left (14395+26499 \sqrt{3}\right )} \tan ^{-1}\left (\frac{\sqrt{2 \left (\sqrt{3}-1\right )}-2 x}{\sqrt{2 \left (1+\sqrt{3}\right )}}\right )+\frac{1}{16} \sqrt{\frac{1}{2} \left (14395+26499 \sqrt{3}\right )} \tan ^{-1}\left (\frac{2 x+\sqrt{2 \left (\sqrt{3}-1\right )}}{\sqrt{2 \left (1+\sqrt{3}\right )}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[(x^4*(4 + x^2 + 3*x^4 + 5*x^6))/(3 + 2*x^2 + x^4)^2,x]

[Out]

-17*x + (5*x^3)/3 - (25*x*(3 + x^2))/(8*(3 + 2*x^2 + x^4)) - (Sqrt[(14395 + 26499*Sqrt[3])/2]*ArcTan[(Sqrt[2*(
-1 + Sqrt[3])] - 2*x)/Sqrt[2*(1 + Sqrt[3])]])/16 + (Sqrt[(14395 + 26499*Sqrt[3])/2]*ArcTan[(Sqrt[2*(-1 + Sqrt[
3])] + 2*x)/Sqrt[2*(1 + Sqrt[3])]])/16 - (Sqrt[(-14395 + 26499*Sqrt[3])/2]*Log[Sqrt[3] - Sqrt[2*(-1 + Sqrt[3])
]*x + x^2])/32 + (Sqrt[(-14395 + 26499*Sqrt[3])/2]*Log[Sqrt[3] + Sqrt[2*(-1 + Sqrt[3])]*x + x^2])/32

Rule 1668

Int[(Pq_)*(x_)^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> With[{d = Coeff[PolynomialRemainde
r[x^m*Pq, a + b*x^2 + c*x^4, x], x, 0], e = Coeff[PolynomialRemainder[x^m*Pq, a + b*x^2 + c*x^4, x], x, 2]}, S
imp[(x*(a + b*x^2 + c*x^4)^(p + 1)*(a*b*e - d*(b^2 - 2*a*c) - c*(b*d - 2*a*e)*x^2))/(2*a*(p + 1)*(b^2 - 4*a*c)
), x] + Dist[1/(2*a*(p + 1)*(b^2 - 4*a*c)), Int[(a + b*x^2 + c*x^4)^(p + 1)*ExpandToSum[2*a*(p + 1)*(b^2 - 4*a
*c)*PolynomialQuotient[x^m*Pq, a + b*x^2 + c*x^4, x] + b^2*d*(2*p + 3) - 2*a*c*d*(4*p + 5) - a*b*e + c*(4*p +
7)*(b*d - 2*a*e)*x^2, x], x], x]] /; FreeQ[{a, b, c}, x] && PolyQ[Pq, x^2] && GtQ[Expon[Pq, x^2], 1] && NeQ[b^
2 - 4*a*c, 0] && LtQ[p, -1] && IGtQ[m/2, 0]

Rule 1676

Int[(Pq_)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> Int[ExpandIntegrand[Pq/(a + b*x^2 + c*x^4), x], x
] /; FreeQ[{a, b, c}, x] && PolyQ[Pq, x^2] && Expon[Pq, x^2] > 1

Rule 1169

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a/c, 2]}, With[{r =
Rt[2*q - b/c, 2]}, Dist[1/(2*c*q*r), Int[(d*r - (d - e*q)*x)/(q - r*x + x^2), x], x] + Dist[1/(2*c*q*r), Int[(
d*r + (d - e*q)*x)/(q + r*x + x^2), x], x]]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2
- b*d*e + a*e^2, 0] && NegQ[b^2 - 4*a*c]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{x^4 \left (4+x^2+3 x^4+5 x^6\right )}{\left (3+2 x^2+x^4\right )^2} \, dx &=-\frac{25 x \left (3+x^2\right )}{8 \left (3+2 x^2+x^4\right )}+\frac{1}{48} \int \frac{450-150 x^2-336 x^4+240 x^6}{3+2 x^2+x^4} \, dx\\ &=-\frac{25 x \left (3+x^2\right )}{8 \left (3+2 x^2+x^4\right )}+\frac{1}{48} \int \left (-816+240 x^2+\frac{6 \left (483+127 x^2\right )}{3+2 x^2+x^4}\right ) \, dx\\ &=-17 x+\frac{5 x^3}{3}-\frac{25 x \left (3+x^2\right )}{8 \left (3+2 x^2+x^4\right )}+\frac{1}{8} \int \frac{483+127 x^2}{3+2 x^2+x^4} \, dx\\ &=-17 x+\frac{5 x^3}{3}-\frac{25 x \left (3+x^2\right )}{8 \left (3+2 x^2+x^4\right )}+\frac{\int \frac{483 \sqrt{2 \left (-1+\sqrt{3}\right )}-\left (483-127 \sqrt{3}\right ) x}{\sqrt{3}-\sqrt{2 \left (-1+\sqrt{3}\right )} x+x^2} \, dx}{16 \sqrt{6 \left (-1+\sqrt{3}\right )}}+\frac{\int \frac{483 \sqrt{2 \left (-1+\sqrt{3}\right )}+\left (483-127 \sqrt{3}\right ) x}{\sqrt{3}+\sqrt{2 \left (-1+\sqrt{3}\right )} x+x^2} \, dx}{16 \sqrt{6 \left (-1+\sqrt{3}\right )}}\\ &=-17 x+\frac{5 x^3}{3}-\frac{25 x \left (3+x^2\right )}{8 \left (3+2 x^2+x^4\right )}+\frac{1}{32} \left (127+161 \sqrt{3}\right ) \int \frac{1}{\sqrt{3}-\sqrt{2 \left (-1+\sqrt{3}\right )} x+x^2} \, dx+\frac{1}{32} \left (127+161 \sqrt{3}\right ) \int \frac{1}{\sqrt{3}+\sqrt{2 \left (-1+\sqrt{3}\right )} x+x^2} \, dx-\frac{1}{32} \sqrt{\frac{1}{2} \left (-14395+26499 \sqrt{3}\right )} \int \frac{-\sqrt{2 \left (-1+\sqrt{3}\right )}+2 x}{\sqrt{3}-\sqrt{2 \left (-1+\sqrt{3}\right )} x+x^2} \, dx+\frac{1}{32} \sqrt{\frac{1}{2} \left (-14395+26499 \sqrt{3}\right )} \int \frac{\sqrt{2 \left (-1+\sqrt{3}\right )}+2 x}{\sqrt{3}+\sqrt{2 \left (-1+\sqrt{3}\right )} x+x^2} \, dx\\ &=-17 x+\frac{5 x^3}{3}-\frac{25 x \left (3+x^2\right )}{8 \left (3+2 x^2+x^4\right )}-\frac{1}{32} \sqrt{\frac{1}{2} \left (-14395+26499 \sqrt{3}\right )} \log \left (\sqrt{3}-\sqrt{2 \left (-1+\sqrt{3}\right )} x+x^2\right )+\frac{1}{32} \sqrt{\frac{1}{2} \left (-14395+26499 \sqrt{3}\right )} \log \left (\sqrt{3}+\sqrt{2 \left (-1+\sqrt{3}\right )} x+x^2\right )+\frac{1}{16} \left (-127-161 \sqrt{3}\right ) \operatorname{Subst}\left (\int \frac{1}{-2 \left (1+\sqrt{3}\right )-x^2} \, dx,x,-\sqrt{2 \left (-1+\sqrt{3}\right )}+2 x\right )+\frac{1}{16} \left (-127-161 \sqrt{3}\right ) \operatorname{Subst}\left (\int \frac{1}{-2 \left (1+\sqrt{3}\right )-x^2} \, dx,x,\sqrt{2 \left (-1+\sqrt{3}\right )}+2 x\right )\\ &=-17 x+\frac{5 x^3}{3}-\frac{25 x \left (3+x^2\right )}{8 \left (3+2 x^2+x^4\right )}-\frac{1}{16} \sqrt{\frac{1}{2} \left (14395+26499 \sqrt{3}\right )} \tan ^{-1}\left (\frac{\sqrt{2 \left (-1+\sqrt{3}\right )}-2 x}{\sqrt{2 \left (1+\sqrt{3}\right )}}\right )+\frac{1}{16} \sqrt{\frac{1}{2} \left (14395+26499 \sqrt{3}\right )} \tan ^{-1}\left (\frac{\sqrt{2 \left (-1+\sqrt{3}\right )}+2 x}{\sqrt{2 \left (1+\sqrt{3}\right )}}\right )-\frac{1}{32} \sqrt{\frac{1}{2} \left (-14395+26499 \sqrt{3}\right )} \log \left (\sqrt{3}-\sqrt{2 \left (-1+\sqrt{3}\right )} x+x^2\right )+\frac{1}{32} \sqrt{\frac{1}{2} \left (-14395+26499 \sqrt{3}\right )} \log \left (\sqrt{3}+\sqrt{2 \left (-1+\sqrt{3}\right )} x+x^2\right )\\ \end{align*}

Mathematica [C]  time = 0.161821, size = 129, normalized size = 0.56 \[ \frac{5 x^3}{3}-\frac{25 \left (x^2+3\right ) x}{8 \left (x^4+2 x^2+3\right )}-17 x+\frac{\left (127 \sqrt{2}-356 i\right ) \tan ^{-1}\left (\frac{x}{\sqrt{1-i \sqrt{2}}}\right )}{16 \sqrt{2-2 i \sqrt{2}}}+\frac{\left (127 \sqrt{2}+356 i\right ) \tan ^{-1}\left (\frac{x}{\sqrt{1+i \sqrt{2}}}\right )}{16 \sqrt{2+2 i \sqrt{2}}} \]

Antiderivative was successfully verified.

[In]

Integrate[(x^4*(4 + x^2 + 3*x^4 + 5*x^6))/(3 + 2*x^2 + x^4)^2,x]

[Out]

-17*x + (5*x^3)/3 - (25*x*(3 + x^2))/(8*(3 + 2*x^2 + x^4)) + ((-356*I + 127*Sqrt[2])*ArcTan[x/Sqrt[1 - I*Sqrt[
2]]])/(16*Sqrt[2 - (2*I)*Sqrt[2]]) + ((356*I + 127*Sqrt[2])*ArcTan[x/Sqrt[1 + I*Sqrt[2]]])/(16*Sqrt[2 + (2*I)*
Sqrt[2]])

________________________________________________________________________________________

Maple [B]  time = 0.022, size = 416, normalized size = 1.8 \begin{align*}{\frac{5\,{x}^{3}}{3}}-17\,x+{\frac{1}{{x}^{4}+2\,{x}^{2}+3} \left ( -{\frac{25\,{x}^{3}}{8}}-{\frac{75\,x}{8}} \right ) }-{\frac{17\,\ln \left ({x}^{2}+\sqrt{3}-x\sqrt{-2+2\,\sqrt{3}} \right ) \sqrt{-2+2\,\sqrt{3}}\sqrt{3}}{64}}-{\frac{89\,\ln \left ({x}^{2}+\sqrt{3}-x\sqrt{-2+2\,\sqrt{3}} \right ) \sqrt{-2+2\,\sqrt{3}}}{32}}-{\frac{ \left ( -34+34\,\sqrt{3} \right ) \sqrt{3}}{32\,\sqrt{2+2\,\sqrt{3}}}\arctan \left ({\frac{2\,x-\sqrt{-2+2\,\sqrt{3}}}{\sqrt{2+2\,\sqrt{3}}}} \right ) }-{\frac{-178+178\,\sqrt{3}}{16\,\sqrt{2+2\,\sqrt{3}}}\arctan \left ({\frac{2\,x-\sqrt{-2+2\,\sqrt{3}}}{\sqrt{2+2\,\sqrt{3}}}} \right ) }+{\frac{161\,\sqrt{3}}{8\,\sqrt{2+2\,\sqrt{3}}}\arctan \left ({\frac{2\,x-\sqrt{-2+2\,\sqrt{3}}}{\sqrt{2+2\,\sqrt{3}}}} \right ) }+{\frac{17\,\ln \left ({x}^{2}+\sqrt{3}+x\sqrt{-2+2\,\sqrt{3}} \right ) \sqrt{-2+2\,\sqrt{3}}\sqrt{3}}{64}}+{\frac{89\,\ln \left ({x}^{2}+\sqrt{3}+x\sqrt{-2+2\,\sqrt{3}} \right ) \sqrt{-2+2\,\sqrt{3}}}{32}}-{\frac{ \left ( -34+34\,\sqrt{3} \right ) \sqrt{3}}{32\,\sqrt{2+2\,\sqrt{3}}}\arctan \left ({\frac{2\,x+\sqrt{-2+2\,\sqrt{3}}}{\sqrt{2+2\,\sqrt{3}}}} \right ) }-{\frac{-178+178\,\sqrt{3}}{16\,\sqrt{2+2\,\sqrt{3}}}\arctan \left ({\frac{2\,x+\sqrt{-2+2\,\sqrt{3}}}{\sqrt{2+2\,\sqrt{3}}}} \right ) }+{\frac{161\,\sqrt{3}}{8\,\sqrt{2+2\,\sqrt{3}}}\arctan \left ({\frac{2\,x+\sqrt{-2+2\,\sqrt{3}}}{\sqrt{2+2\,\sqrt{3}}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4*(5*x^6+3*x^4+x^2+4)/(x^4+2*x^2+3)^2,x)

[Out]

5/3*x^3-17*x+(-25/8*x^3-75/8*x)/(x^4+2*x^2+3)-17/64*ln(x^2+3^(1/2)-x*(-2+2*3^(1/2))^(1/2))*(-2+2*3^(1/2))^(1/2
)*3^(1/2)-89/32*ln(x^2+3^(1/2)-x*(-2+2*3^(1/2))^(1/2))*(-2+2*3^(1/2))^(1/2)-17/32/(2+2*3^(1/2))^(1/2)*arctan((
2*x-(-2+2*3^(1/2))^(1/2))/(2+2*3^(1/2))^(1/2))*(-2+2*3^(1/2))*3^(1/2)-89/16/(2+2*3^(1/2))^(1/2)*arctan((2*x-(-
2+2*3^(1/2))^(1/2))/(2+2*3^(1/2))^(1/2))*(-2+2*3^(1/2))+161/8/(2+2*3^(1/2))^(1/2)*arctan((2*x-(-2+2*3^(1/2))^(
1/2))/(2+2*3^(1/2))^(1/2))*3^(1/2)+17/64*ln(x^2+3^(1/2)+x*(-2+2*3^(1/2))^(1/2))*(-2+2*3^(1/2))^(1/2)*3^(1/2)+8
9/32*ln(x^2+3^(1/2)+x*(-2+2*3^(1/2))^(1/2))*(-2+2*3^(1/2))^(1/2)-17/32/(2+2*3^(1/2))^(1/2)*arctan((2*x+(-2+2*3
^(1/2))^(1/2))/(2+2*3^(1/2))^(1/2))*(-2+2*3^(1/2))*3^(1/2)-89/16/(2+2*3^(1/2))^(1/2)*arctan((2*x+(-2+2*3^(1/2)
)^(1/2))/(2+2*3^(1/2))^(1/2))*(-2+2*3^(1/2))+161/8/(2+2*3^(1/2))^(1/2)*arctan((2*x+(-2+2*3^(1/2))^(1/2))/(2+2*
3^(1/2))^(1/2))*3^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{5}{3} \, x^{3} - 17 \, x - \frac{25 \,{\left (x^{3} + 3 \, x\right )}}{8 \,{\left (x^{4} + 2 \, x^{2} + 3\right )}} + \frac{1}{8} \, \int \frac{127 \, x^{2} + 483}{x^{4} + 2 \, x^{2} + 3}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(5*x^6+3*x^4+x^2+4)/(x^4+2*x^2+3)^2,x, algorithm="maxima")

[Out]

5/3*x^3 - 17*x - 25/8*(x^3 + 3*x)/(x^4 + 2*x^2 + 3) + 1/8*integrate((127*x^2 + 483)/(x^4 + 2*x^2 + 3), x)

________________________________________________________________________________________

Fricas [B]  time = 1.77465, size = 2102, normalized size = 9.06 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(5*x^6+3*x^4+x^2+4)/(x^4+2*x^2+3)^2,x, algorithm="fricas")

[Out]

1/1295793216*(2159655360*x^7 - 17709173952*x^5 - 123268*143883^(1/4)*sqrt(219)*sqrt(3)*sqrt(2)*(x^4 + 2*x^2 +
3)*sqrt(14395*sqrt(3) + 79497)*arctan(1/658350237832613766*sqrt(24746051)*143883^(3/4)*sqrt(219)*sqrt(11*14388
3^(1/4)*sqrt(219)*(127*sqrt(3)*x - 483*x)*sqrt(14395*sqrt(3) + 79497) + 222714459*x^2 + 222714459*sqrt(3))*(16
1*sqrt(3)*sqrt(2) - 127*sqrt(2))*sqrt(14395*sqrt(3) + 79497) - 1/8868084822*143883^(3/4)*sqrt(219)*(161*sqrt(3
)*sqrt(2)*x - 127*sqrt(2)*x)*sqrt(14395*sqrt(3) + 79497) + 1/2*sqrt(3)*sqrt(2) - 1/2*sqrt(2)) - 123268*143883^
(1/4)*sqrt(219)*sqrt(3)*sqrt(2)*(x^4 + 2*x^2 + 3)*sqrt(14395*sqrt(3) + 79497)*arctan(1/658350237832613766*sqrt
(24746051)*143883^(3/4)*sqrt(219)*sqrt(-11*143883^(1/4)*sqrt(219)*(127*sqrt(3)*x - 483*x)*sqrt(14395*sqrt(3) +
 79497) + 222714459*x^2 + 222714459*sqrt(3))*(161*sqrt(3)*sqrt(2) - 127*sqrt(2))*sqrt(14395*sqrt(3) + 79497) -
 1/8868084822*143883^(3/4)*sqrt(219)*(161*sqrt(3)*sqrt(2)*x - 127*sqrt(2)*x)*sqrt(14395*sqrt(3) + 79497) - 1/2
*sqrt(3)*sqrt(2) + 1/2*sqrt(2)) - 143883^(1/4)*sqrt(219)*(79497*x^4 + 158994*x^2 - 14395*sqrt(3)*(x^4 + 2*x^2
+ 3) + 238491)*sqrt(14395*sqrt(3) + 79497)*log(11*143883^(1/4)*sqrt(219)*(127*sqrt(3)*x - 483*x)*sqrt(14395*sq
rt(3) + 79497) + 222714459*x^2 + 222714459*sqrt(3)) + 143883^(1/4)*sqrt(219)*(79497*x^4 + 158994*x^2 - 14395*s
qrt(3)*(x^4 + 2*x^2 + 3) + 238491)*sqrt(14395*sqrt(3) + 79497)*log(-11*143883^(1/4)*sqrt(219)*(127*sqrt(3)*x -
 483*x)*sqrt(14395*sqrt(3) + 79497) + 222714459*x^2 + 222714459*sqrt(3)) - 41627357064*x^3 - 78233515416*x)/(x
^4 + 2*x^2 + 3)

________________________________________________________________________________________

Sympy [A]  time = 0.532538, size = 58, normalized size = 0.25 \begin{align*} \frac{5 x^{3}}{3} - 17 x - \frac{25 x^{3} + 75 x}{8 x^{4} + 16 x^{2} + 24} + \operatorname{RootSum}{\left (1048576 t^{4} + 29480960 t^{2} + 2106591003, \left ( t \mapsto t \log{\left (\frac{557056 t^{3}}{816619683} + \frac{166600064 t}{816619683} + x \right )} \right )\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**4*(5*x**6+3*x**4+x**2+4)/(x**4+2*x**2+3)**2,x)

[Out]

5*x**3/3 - 17*x - (25*x**3 + 75*x)/(8*x**4 + 16*x**2 + 24) + RootSum(1048576*_t**4 + 29480960*_t**2 + 21065910
03, Lambda(_t, _t*log(557056*_t**3/816619683 + 166600064*_t/816619683 + x)))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (5 \, x^{6} + 3 \, x^{4} + x^{2} + 4\right )} x^{4}}{{\left (x^{4} + 2 \, x^{2} + 3\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(5*x^6+3*x^4+x^2+4)/(x^4+2*x^2+3)^2,x, algorithm="giac")

[Out]

integrate((5*x^6 + 3*x^4 + x^2 + 4)*x^4/(x^4 + 2*x^2 + 3)^2, x)